Accepted Full Papers

  • D-Feat Occlusions: Diffusion Features for Robustness to Partial Visual Occlusions in Object Recognition
    Rupayan Mallick, Sibo Dong, Nataniel Ruiz, Sarah Adel Bargal
  • Improving Optical Flow and Stereo Depth Estimation by understanding learning difficulties
    Jisoo Jeong, Hong Cai, Jamie Menjay Lin, Fatih Porikli
  • The Surprising Utility of Group Partitioning in Improving Conformal Prediction of Visual Classifiers under Distributional Shifts
    Kowshik Thopalli, Vivek Narayanaswamy, Jayaraman J. Thiagarajan
  • Uncertainty Quantification for Gradient-based Explanations in Neural Networks
    Mihir Mulye, Matias Valdenegro-Toro
  • WQLCP: Weighted Adaptive Conformal Prediction for Robust Uncertainty Quantification Under Distribution Shifts
    Shadi Alijani, Homayoun Najjaran

Accepted Extended Abstracts

  • Centaur: Robust End-to-End Autonomous Driving with Test-Time Training
    Chonghao Sima, Kashyap Chitta, Zhiding Yu, Shiyi Lan, Ping Luo, Andreas Geiger, Hongyang Li, Jose M. Alvarez
  • Compositional Targeted Multi-Label Universal Perturbations
    Hassan Mahmood, Ehsan Elhamifar
  • Consensus-Driven Active Model Selection
    Justin Kay, Grant Van Horn, Subhransu Maji, Daniel Sheldon, Sara Beery
  • Consensus-Driven Active Model Selection
    Justin Kay, Grant Van Horn, Subhransu Maji, Daniel Sheldon, Sara Beery
  • HARMONY: Hidden Activation Representations and Model Output-Aware Uncertainty Estimation for Vision-Language Models
    Erum Mushtaq, Zalan Fabian, Yavuz Faruk Bakman, Anil Ramakrishna, Mahdi Soltanolkotabi, Salman Avestimehr
  • Quantile UQNet: A Conformal, Nonlinear Scaling Model for Uncertainty Prediction
    Cassandra Tong Ye, Tyler King, Kristina Monakhova
  • Spatially-Aware Evaluation of Segmentation Uncertainty
    Tal Zeevi, Eléonore V. Lieffrig, Lawrence H. Staib, John A Onofrey
  • View-Dependent Uncertainty Estimation of 3D Gaussian Splatting
    Chenyu Han, Corentin Dumery

Accepted Posters

  • Conformal Object Detection by Sequential Risk Control
    Léo Andéol
  • Conformal Prediction and MLLM aided Uncertainty Quantification in Scene Graph Generation
    Sayak Nag, Udita Ghosh
  • DPU: Dynamic Prototype Updating for Multimodal Out-of-Distribution Detection
    Shawn Li, Huixian Gong, Hao Dong, Tiankai Yang, Zhengzhong Tu, Yue Zhao
  • Detecting Out-of-distribution through the Lens of Neural Collapse
    Litian Liu, Yao Qin
  • Dual Energy-Based Model with Open-World Uncertainty Estimation for Out-of-distribution Detection
    Qi Chen, Hu Ding
  • Leveraging Perturbation Robustness to Enhance Out-of-Distribution Detection
    Wenxi Chen, Raymond A. Yeh, Shaoshuai Mou, Yan Gu
  • LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty
    Christoforos N. Spartalis, Theodoros Semertzidis, Efstratios Gavves, Petros Daras
  • OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection
    Max Gutbrod, David Rauber, Danilo Weber Nunes, Christoph Palm
  • PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting
    Alex Hanson, Allen Tu, Vasu Singla, Mayuka Jayawardhana, Matthias Zwicker, Tom Goldstein
  • ProHOC: Probabilistic Hierarchical Out-of-Distribution Classification via Multi-Depth Networks
    Erik Wallin, Fredrik Kahl, Lars Hammarstrand
  • Unified Uncertainty-Aware Diffusion for Multi-Agent Modeling
    Guillem Capellera, Antonio Rubio, Luis Ferraz, Antonio Agudo