D-Feat Occlusions: Diffusion Features for Robustness to Partial Visual Occlusions in Object Recognition Rupayan Mallick, Sibo Dong, Nataniel Ruiz, Sarah Adel Bargal
Improving Optical Flow and Stereo Depth Estimation by understanding learning difficulties Jisoo Jeong, Hong Cai, Jamie Menjay Lin, Fatih Porikli
The Surprising Utility of Group Partitioning in Improving Conformal Prediction of Visual Classifiers under Distributional Shifts Kowshik Thopalli, Vivek Narayanaswamy, Jayaraman J. Thiagarajan
Uncertainty Quantification for Gradient-based Explanations in Neural Networks Mihir Mulye, Matias Valdenegro-Toro
WQLCP: Weighted Adaptive Conformal Prediction for Robust Uncertainty Quantification Under Distribution Shifts Shadi Alijani, Homayoun Najjaran
Accepted Extended Abstracts
Centaur: Robust End-to-End Autonomous Driving with Test-Time Training Chonghao Sima, Kashyap Chitta, Zhiding Yu, Shiyi Lan, Ping Luo, Andreas Geiger, Hongyang Li, Jose M. Alvarez
Detecting Out-of-distribution through the Lens of Neural Collapse Litian Liu, Yao Qin
Dual Energy-Based Model with Open-World Uncertainty Estimation for Out-of-distribution Detection Qi Chen, Hu Ding
Leveraging Perturbation Robustness to Enhance Out-of-Distribution Detection Wenxi Chen, Raymond A. Yeh, Shaoshuai Mou, Yan Gu
LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty Christoforos N. Spartalis, Theodoros Semertzidis, Efstratios Gavves, Petros Daras
OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection Max Gutbrod, David Rauber, Danilo Weber Nunes, Christoph Palm
PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting Alex Hanson, Allen Tu, Vasu Singla, Mayuka Jayawardhana, Matthias Zwicker, Tom Goldstein
ProHOC: Probabilistic Hierarchical Out-of-Distribution Classification via Multi-Depth Networks Erik Wallin, Fredrik Kahl, Lars Hammarstrand
Unified Uncertainty-Aware Diffusion for Multi-Agent Modeling Guillem Capellera, Antonio Rubio, Luis Ferraz, Antonio Agudo