A Simple and Explainable Method for Uncertainty Estimation using Attribute Prototype Networks Claudius Zelenka, Andrea Göhring, Daniyal Kazempour, Maximilian Hünemörder, Lars Schmarje, Peer Kröger
A Unified Approach to Learning with Label Noise and Unsupervised Confidence Approximation Navid Rabbani, Adrien Bartoli
Adversarial Attacks Against Uncertainty Quantification Emanuele Ledda, Daniele Angioni, Giorgio Piras, Giorgio Fumera, Battista Biggio, Fabio Roli
Biased Class disagreement: detection of out of distribution instances by using differently biased semantic segmentation models. Roberto Alcover-Couso, Juan C. SanMiguel, Marcos Escudero-Viñolo
Calibrated Out-of-Distribution Detection with a Generic Representation(Oral) Tomas Vojir, Jan Sochman, Rahaf Aljundi, Jiri Matas
DELO: Deep Evidential LiDAR Odometry using Partial Optimal Transport Sk Aziz Ali, Djamila Aouada, Gerd Reis, Didier Stricker
Distance matters for improving performance estimation under covariate shift Mélanie Roschewitz, Ben Glocker
Dual-level Interaction for Domain Adaptive Semantic Segmentation Dongyu Yao, Boheng Li
Exploring Inlier and Outlier Specification for Improved Medical OOD Detection Vivek Narayanaswamy, Yamen Mubarka, Rushil Anirudh, Deepta Rajan, Jayaraman J. Thiagarajan
Far Away in the Deep Space: Dense Nearest-Neighbor-Based Out-of-Distribution Detection(Oral) Silvio Galesso, Max Argus, Thomas Brox
Gaussian Latent Representations for Uncertainty Estimation using Mahalanobis Distance in Deep Classifiers(Oral) Aishwarya Venkataramanan, Assia Benbihi, Martin Laviale, Cédric Pradalier
Identifying Out-of-Domain Objects with Dirichlet Deep Neural Networks Ahmed Hammam, Frank Bonarens, Seyed Eghbal Ghobadi, Christoph Stiller
Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation for Pixel-wise Regression(Oral) Anton Baumann, Thomas Roßberg, Michael Schmitt
Uncle-SLAM: Uncertainty Learning for Dense Neural SLAM Erik Sandström, Kevin Ta, Martin R. Oswald, Luc Van Gool
Accepted Extended Abstracts
A comparison of Uncertainty Quantification methods for Earth Observation Image Regression data Nils Lehmann, Nina Maria Gottschling, Stefan Depeweg, Eric Nalisnick
Adaptive Bounding Box Uncertainty via Conformal Prediction Alexander Timans, Christoph-Nikolas Straehle, Kaspar Sakmann, Eric Nalisnick
An Empirical Investigation of Pretrained Model Selection for Out-of-Distribution Generalization and Calibration Hiroki Naganuma, Ryuichiro Hataya
Beyond accuracy : confidence score calibration in deep-learning classification models for camera trap images and sequences Gaspard Dussert, Simon Chamailé-Jammes, Stéphane Dray, Vincent Miele
DAC: Detector-Agnostic Spatial Covariances for Deep Local Features Javier Tirado-Garín, Frederik Rahbæk Warburg, Javier Civera
Identifying Important Group of Pixels using Interactions Kosuke Sumiyasu, Kazuhiko Kawamoto, Hiroshi Kera
On the Interplay of Curvature, Calibration and Out-of-Distribution Generalization: Insights from SAM and Focal Loss Analyses Hiroki Naganuma, Masanari Kimura
On the detection of Out-Of-Distribution samples in Multiple Instance Learning Loïc Le Bescond, Maria Vakalopoulou, Stergios Christodoulidis, Fabrice André, Hugues Talbot
Two-Step Active Learning for Instance Segmentation with Uncertainty and Diversity Sampling Ke Yu, Stephen Albro, Giulia DeSalvo, Suraj Nandkishor Kothawade, Abdullah Rashwan, Sasan Tavakkol, kayhan Batmanghelich, Xiaoqi Yin
Tyche: Stochastic In-Context Learning Model for Medical Image Segmentation Marianne Rakic, Jose Javier Gonzalez Ortiz, Hallee E. Wong, Adrian V Dalca, John Guttag
XVO: Generalized Visual Odometry via Cross-Modal Self-Training Lei Lai, Zhongkai Shangguan, Jimuyang Zhang, Eshed Ohn-Bar